SIEMENS

Datenbuch 1980/81

SIPMOS-Leistungstransistoren

SIEMENS

SIPMOS-Leistungstransistoren Datenbuch 1980/81

Herausgegeben von Siemens AG, Bereich Bauelemente, Balanstraße 73, 8000 München 80.

Mit den Angaben im Datenbuch werden die Bauelemente spezifiziert, nicht Eigenschaften zugesichert. Liefermöglichkeit und technische Änderungen vorbehalten.

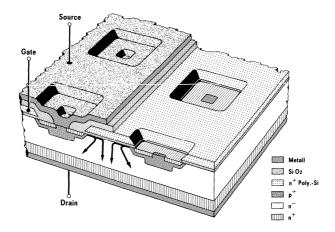
Für die angegebenen Schaltungen, Beschreibungen und Tabellen wird keine Gewähr bezüglich der Freiheit von Rechten Dritter übernommen.

Fragen über Technik, Preise und Liefermöglichkeiten richten Sie bitte an unsere Zweigniederlassung im Inland, Abteilung VB oder an unsere Landesgesellschaften im Ausland (siehe Geschäftsstellenverzeichnis).

Inhaltsverzeichnis SIPMOS-Kurzinformation Typenübersicht

Inhaltsverzeichnis

		Seite
SIPMOS-Kurz	information	5
Typenübersic	nt	10
Anwendungsl	peispiele	13
MC- u	nd VLSI-kompatible Leistungsschalter	14
	ngsschalter in Motorsteuerungen und Wechselrichtern	20
	ngsschalter in getakteten Stromversorgungen	21
	ngsschalter in der Kfz-Elektronik	32
Datenblätter	BUZ 10	36
	BUZ 20	38
	BUZ 23	40
	BUZ 34	42
	BUZ 45	44
	BUZ 54	46
Erläuterunge	n zu den technischen Daten	49
Anschriften u	nserer Geschäftsstellen	61


Einführung

SIPMOS-Leistungstransistoren

(Siemens Power MOS)

Die SIPMOS-Technologie stellt ein hochmodernes Herstellungsverfahren für MOS-Feldeffekt-Leistungsbauelemente dar. Optimales Design und richtungsweisende neue Erkenntnisse auf dem Gebiet der MOS-Technik schufen neue Leistungstransistoren mit bisher unbekannten hervorragenden Eigenschaften.

Der Aufbau von SIPMOS-Leistungstransistoren ist im Bild dargestellt. Auf einem niederohmigen n⁺-Kristall befindet sich eine schwachleitende n-Schicht. Auf der Oberfläche sind
zellenförmige n⁺-leitende Sourcegebiete in p-leitenden Wannen angeordnet. Eine in Quarz
isoliert eingebettete Polysilizium Gateelektrode bedeckt die Oberfläche zwischen den Sourcezellen, die miteinander durch die ganzflächige Source-Metallisierung verbunden sind. Die
Gateelektrode hat spezifisch profilierte Flanken, die bei der Herstellung der extrem kurzen
Kanalzone als Maske für die Implantation von n- und p-Dotierionen dienen. Der Einsatz der
lonenimplantation und der dadurch erzielte kurze Kanal sind neben der optimalen geometrischen Anordnung der Schlüssel für die beispiellos guten SIPMOS-Eigenschaften wie große
Steilheit und günstige Einsatzspannung, die die Microcomputer-Kompatibilität gewährleisten.
Die SIPMOS-Technologie nutzt das Siliziumkristall optimal. Ihre Einfachheit führt zu großer
Reproduzierbarkeit der elektrischen Eigenschaften, zur Zuverlässigkeit und zur Widerstandsfähigkeit gegen kurzzeitige Überbelastung.

Wirkungsweise:

Der Strom unter der SiO_2 -Si-Grenzfläche wird bei positiver Gate-Source-Spannung durch Elektronen bewirkt, die durch das elektrische Feld der Gateelektrode dort hingezogen werden.

Zwischen den Sourcezellen dreht der Elektronenstrom vertikal nach unten. Der Einschaltwiderstand setzt sich aus dem Widerstand des Kanals und aus dem Widerstand des schwachleitenden n-Draingebietes zusammen.

Anwendung des SIPMOS-Leistungstransistors

Eine völlig neue Dimension in der Schaltungstechnik mit Transistoren eröffnen die neuartigen SIPMOS-Transistoren, deren neue MOS-Technologie für das schnelle Schalten hoher Leistungen mit sehr kleinen Steuerleistungen geradezu prädestiniert ist. SIPMOS-Transistoren haben hohe Eingangswiderstände, Bahnwiderstände im eingeschalteten Zustand von einigen Hundertstel Ohm bis einigen Ohm, Schaltzeiten von einigen bis zu wenigen Hundert Nanosekunden und keine Speicherzeit, da der Ladungsspeichereffekt bei FET's nicht vorhanden ist. Sie kennen im Gegensatz zu bipolaren Transistoren keinen zweiten Durchbruch, weil sie sich durch den positiven Temperaturgang des On-Widerstandes selbst gegen thermische Überlastung schützen.

Aufgrund dieser Eigenschaften kann erwartet werden, daß diese Leistungs-MOS-FET's nach und nach die bipolaren Transistoren aus vielen Anwendungen der Leistungselektronik verdrängen.

Die SIPMOS-Transistoren können als sehr schnelle Schalter eingesetzt werden, in Netzgeräten, Gleichspannungswandlern, Schaltnetzteilen, Leistungsinvertern, Breitbandverstärkern, Audio-Verstärkern, HF-Linearverstärkern, Microcomputer- und Rechnerinterfaces zum leistungslosen Schalten hoher Ströme (VLSI-kompatibel).

Besonders auffallend sind die Vorteile im Vergleich mit Bipolar-Leistungstransistoren.

SIPMOS-Transistoren sind spannungsgesteuert, haben nur kapazitive Ladeströme, da keine Ruheströme aufzubringen sind. Sie lassen sich problemlos, ohne Stromverteilungswiderstände parallelschalten. Die Ansteuerleistung hängt nicht von der geschalteten Leistung ab, und die Ansteuerschaltung kann für eine 10 W-Stufe ebenso ausgelegt werden wie für eine 100 W-Stufe.

SIPMOS-Kurzinformation

Die nachfolgende Tabelle stellt die wichtigsten Eigenschaften von bipolaren und SIPMOS-Transistoren gegenüber:

Parameter	Bipolar	SIPMOS
Eingangswiderstand	klein	groß, $>$ 10 $^{9}\Omega$
Leistungsverstärkung Einschaltzeit Ausschaltzeit Speicherzeit Grenzfrequenz Bahn-Widerstand Überlastbarkeit	(Stromsteuerung) 1002000 50 500 ns 5002000 ns 15 μs < 100 MHz 0,3 Ω schlecht	(Spannungssteuerung) statisch ∞ 10 200 ns 10 600 ns keine GHz 0,03 Ω 2 Ω
therm. Stabilisierung Parallelschaltung	(Second-Breakdown) Zusätzlicher Schaltungs- aufwand notwendig nur mit besonderer	gut (kein Second-Breakdown) kein Aufwand notwendig uneingeschränkt
MC- und VLSI-kompatibel Treibersignal	Beschaltung ($R_E + R_B$) nein 0,110 A	möglich ja 5 V, max. 100 mA bei 50 Ω Generator- widerstand
Restspannung Sperrspannung 100 V Sperrspannung 1000 V	größer kleiner	kleiner größer

Typenübersicht:

Einsatzmöglichkeiten von SIPMOS-Leistungstransistoren

In der Leistungselektronik als Leistungsschalter in

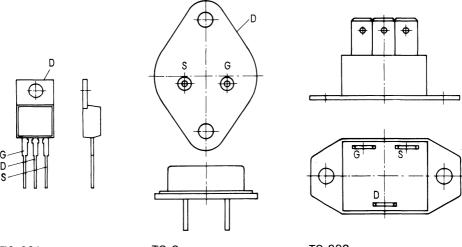
- Getakteten Stromversorgungsgeräten
- Motorsteuerungen
- Ultraschaligeneratoren

In der Datentechnik als Leistungsendstufe in

- Drucker
- Schritt-Motor-Steuerung
- Plotter

In der KFZ-Elektronik als Leistungselement in

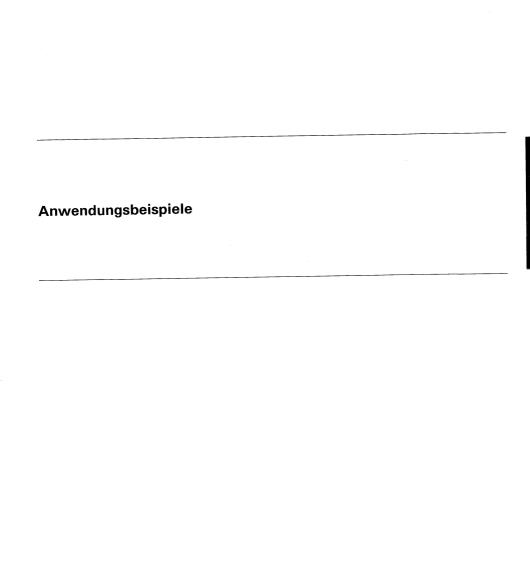
- Lichtmaschinen-Spannungsregler
- Jetronic, Motronic
- Relaisfunktionen
- Zündung


Generell eignet sich der SIPMOS-Leistungstransistor auf Grund seiner besonderen Eigenschaften für den Einsatz als schneller Leistungsschalter in z. B. getakteten Stromversorgungsschaltungen, die in der gesamten Elektrotechnik verwendet werden.

Die Ansteuerbedingungen des SIPMOS-Leistungstransistors

$$/ \le 1 \,\text{mA}, 2 \,\text{V} < v < 5 \,\text{V},$$

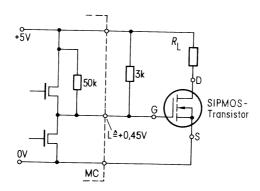
zeigen, daß dieser Transistor unmittelbar als Endstufe eines Mikroprozessors verwendet werden kann. Man kann hier auf die Zwischenschaltung eines Treibers verzichten.


Gehäuseformen:

TO-220

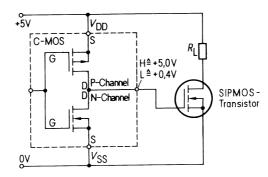
TO-3

TO-238

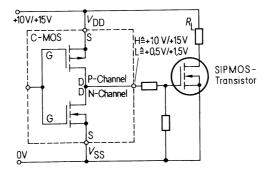

MC- und VLSI-kompatible Leistungsschalter

Interface-Schaltung

MC/SIPMOS-Leistungsschalter


Die Ansteuerung zwischen MC- und SIPMOS-Transistor ist ohne Zwischenschaltung eines aktiven Interface-Treibers möglich. Die notwendige, positive Polarität der Ansteuerspannung läßt sich durch entsprechende Programmierung des MC herbeiführen.

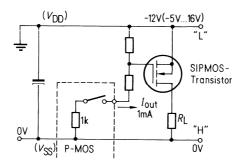
Damit mit MC-High-Pegel am Ausgang geschaltet werden kann, müssen mittels Software bei Stellung RESET alle MC-Ausgänge auf LOW gesetzt werden.



Interface-Schaltung

C-MOS-Baustein/SIPMOS-Leistungsschalter

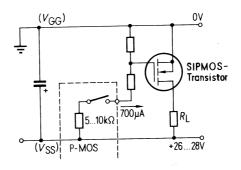
für 5 V-Versorgungsspannung



MC- und VLSI-kompatible Leistungsschalter

Interface-Schaltung

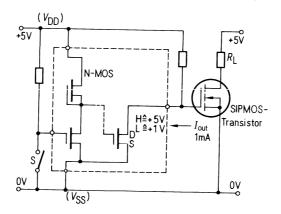
P-MOS-Depletion-Technik (Standard)/SIPMOS-Leistungsschalter mit Open-Drain-Ausgangsstufe.


		MOS-A	usgang	
	Stellglied	V_{DS}	I _{out}	Verbraucher
Iout I	Ein	~-1V	~1 mA	Ein
	Aus	-12V(-516V)		Aus

Interface-Schaltung

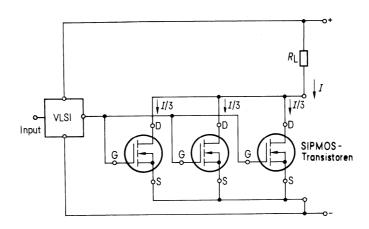
Hochvolt-P-MOS/SIPMOS-Leistungsschalter

	!	М	OS - Ausgang	
	Stellglied	Vout	I_{out}	Rout
-(V _{out} -V _{SS})	Ein	≤I-5VI	≥700µA	≤7 kΩ
VSS VSS	Aus	-2628V		

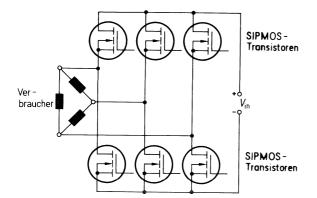


MC- und VLSI-kompatible Leistungsschalter

Interface-Schaltung

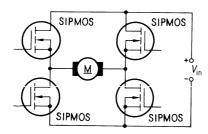

N-MOS-Depletion-Technik/SIPMOS-Leistungsschalter mit Open-Drain-Ausgangsstufe.

		MOS-A	usgang	
	Stellglied	V _{DS}	I_{out}	Verbraucher
V _{DD}	Aus	~+1V	~1mV	Aus
$ \begin{array}{ccc} $	Ein	+5V		Ein

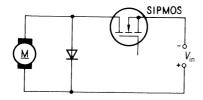


Parallelschaltung von SIPMOS-Transistoren

Der SIPMOS-Leistungstransistor besteht aus einigen tausend parallelgeschalteten Einzeltransistoren auf einem Chip. Das erklärt, weshalb man SIPMOS-Transistoren bedenkenlos ohne zusätzliche Maßnahmen parallelschalten kann.



Leistungsschalter in Motorsteuerungen und Wechselrichtern


Drehstrom-Brücke:

für Asynchron-Motoren für Dreiphasen-Wechselrichter

Vier-Quadranten-Voll-Brücke:

für Gleichstrom-Motoren für Wechselrichter

Chopper, Gleichstromsteller:

für Gleichstrom-Motoren

Leistungsschalter in getakteten Stromversorgungen

SIPMOS-Transistoren in getakteten Stromversorgungsgeräten

Ein Haupteinsatzgebiet von SIPMOS-Leistungsschaltern sind die getakteten Stromversorgungsgeräte. In diesen sog. Schaltnetzteilen SNT wird das extrem schnelle Schaltverhalten von SIPMOS-Transistoren, als auch der große Sicherheitsbereich im SOA-Diagramm ausgenützt.

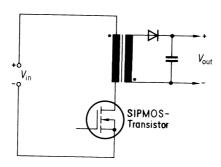
SIPMOS-Transistoren in Schaltnetzteilen f ~ 100 kHz

Bipolar-Transistoren mit ihren relativ langen Schaltzeiten ließen bisher Schaltfrequenzen über 30 . . . 35 kHz kaum zu. SIPMOS-Transistoren dagegen erlauben Schaltfrequenzen im Bereich von 50 . . . 100 kHz.

Bedingt durch die Erhöhung der Taktfrequenz im SNT von 20 kHz auf 100 kHz kann man mit noch kleineren magnetischen Bauteilen und kleineren Kapazitäten auskommen, so daß sich das Geräte-Volumen und -Gewicht noch einmal verringert und die Gesamtverlustleistung reduziert wird.

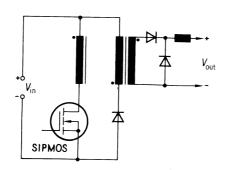
Die Verkleinerung betrifft insbesondere sämtliche Übertrager und Drosseln, sowie Glättungskondensatoren und Funkentstör-Bauteile. Ein Optimum der Taktfrequenz, das sich aus der Güte derzeit erhältlicher Filterbauelemente ergibt, liegt bei etwa 100 kHz.

SIPMOS-Transistoren in Schaltnetzteilen f~20 kHz


Wird der SIPMOS-Transistor bei herkömmlichen Schaltfrequenzen eingesetzt, so kann im SNT die Treiberleistung von z.B. 6 W auf < 0,6 W reduziert werden und es können die Treibertransistoren, z.B. BSX 46 entfallen. Bei einem vorliegenden 60 W-Gerät in Halbbrücke wird durch Einsparung von Treiberleistung eine Wirkungsgradverbesserung um ca. 20% erzielt.

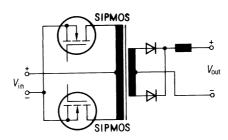
Leistungsschalter in getakteten Stromversorgungen

Getaktete Stromversorgungsgeräte mit SIPMOS-Transistoren für Ausgangsleistungen < 300 W

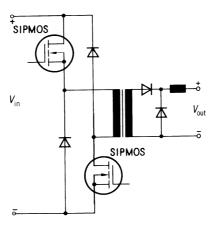

Eintakt-Sperrwandler

Die Energieübertragung von der Primärseite auf die Sekundärseite des Wandlers erfolgt während der Sperrphase des SIPMOS-Transistors.

Eintakt-Durchflußwandler

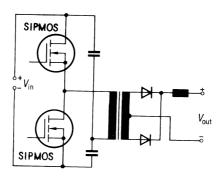

Die Energieübertragung erfolgt bei diesem Wandlertyp während der Zeit, wo der Transistor leitend ist.

Getaktete Stromversorgungsgeräte (SNT) mit SIPMOS-Transistoren für größere Leistungen

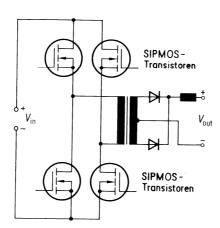

Gegentaktwandler

Der Leistungsteil besteht aus zwei SIPMOS-Transistoren.

Asymmetrische Halbbrücke


Der Leistungsteil besteht aus zwei Dioden und zwei SIPMOS-Transistoren. Die Gate-Ansteuerung einer der beiden Transistoren muß galvanisch getrennt ausgeführt werden, entweder mit Übertrager oder mit Optokoppler.

Leistungsschalter in getakteten Stromversorgungen


Symmetrische Halbbrücke

Der Leistungsteil besteht aus zwei Kondensatoren und zwei SIPMOS-Transistoren. Bei dieser Schaltung muß ebenfalls bei einem FET Potentialtrennung zwischen Steuerlogik und Leistungsschalter bestehen.

Vollbrücke

Der Leistungsteil besteht aus vier SIPMOS-Transistoren. In dieser Schaltung muß die Gate-Ansteuerung bereits von zwei Transistoren galvanisch getrennt ausgeführt werden.

Empfohlene Wandlerart in Abhängigkeit von der Leistung

Leistung	1-10 W	10-100 W	100-300 W	300-1000 W	1000-3000 W	> 3000 W
Eintakt- Sperrwandler	\times	\times	\times			
Eintakt- Durchflußwandler	\times	\times	\times		·	
Halbbrücke			\times	\times		
Vollbrücke			\times	\times	\times	
Gegentakt- Wandler			\times	\times	\times	\times

25

Drosselwandler mit SIPMOS-Transistoren: 5 V/10 A/100 kHz

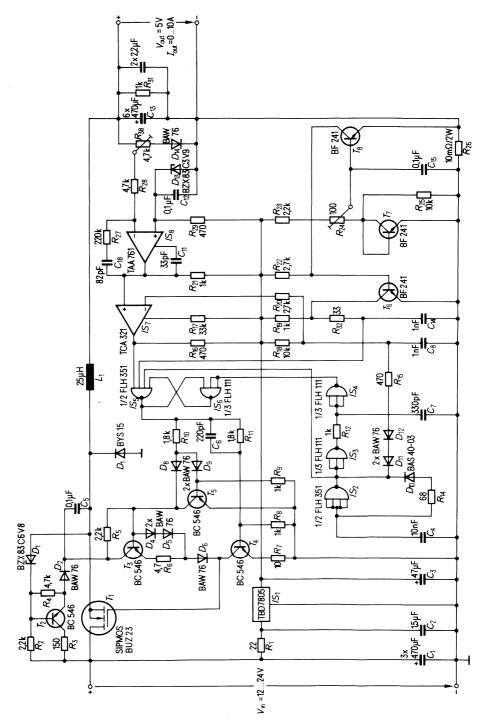
Der im Bild dargestellte DC/DC-Wandler erzeugt aus einer Gleichspannung eine geregelte Gleichspannung niedrigeren Potentials. Der Wandler besteht im Prinzip aus einem getakteten Längsregler, wobei die Verlustleistung durch den nicht stetigen Betrieb beträchtlich verringert wird.

Für Schaltungen dieser Art ist auch die Bezeichnung Schaltregler, Tiefsetzsteller, Längsschalter mit Speicherdrossel und Drosselwandler üblich. Kennzeichnende Merkmale sind der Halbleiter-Schalter T_1 , der über die Drossel L_1 den Ausgang mit dem Eingang dieser Schaltung verbindet, die Freilaufdiode D_7 und die Glättungskondensatoren C_1 und C_{13} , die die Wechselstromanteile abblocken.

Um diesen Wandler zu betreiben, ist eine Treiberstufe, ein Spannungsregler und eine Strombegrenzung erforderlich. Zusätzlich benötigt man noch einen Taktgenerator, wenn die Schaltung nicht frei schwingen soll. Bei freischwingenden Schaltungen ändert sich die Frequenz in Abhängigkeit von der Belastung.

Bei dem hier beschriebenen Drosselwandler ist als Schalttransistor T_1 ein SIPMOS-Transistor BUZ 23 eingesetzt. Dieser zeichnet sich durch die hohe Grenzfrequenz und die geringe Ansteuerleistung aus. Die hohe erreichbare Schaltfrequenz ermöglicht die Verwendung einer kleineren Induktivität der Speicherdrossel L_1 und einer kleineren Kapazität des Glättungskondensators C_{13} und bewirkt ein gutes dynamisches Verhalten. Die Eingangskapazität von 700 pF bei dem verwendeten Typ von T_1 , die eine niederohmige Ansteuerung erforderlich machen, um die kurzen Schaltzeiten auch tatsächlich zu erlangen, und die Bereitstellung der Steuerspannung aus der Eingangsspannung V_{in} verlangen einen Kompromiß bei der Schaltfrequenz. Aus diesem Grund wird der Wandler mit einer konstanten Taktfrequenz (gewählt: 100 kHz) betrieben, wobei die Spannungsregelung über die Einschaltdauer (0–90%) erfolgt. Im Leerlauf und bei geringer Last tritt Aussetzbetrieb ein.

Grenzen der Eingangsspannung: $12 \text{ V} < V_{in} < 30 \text{ V}$

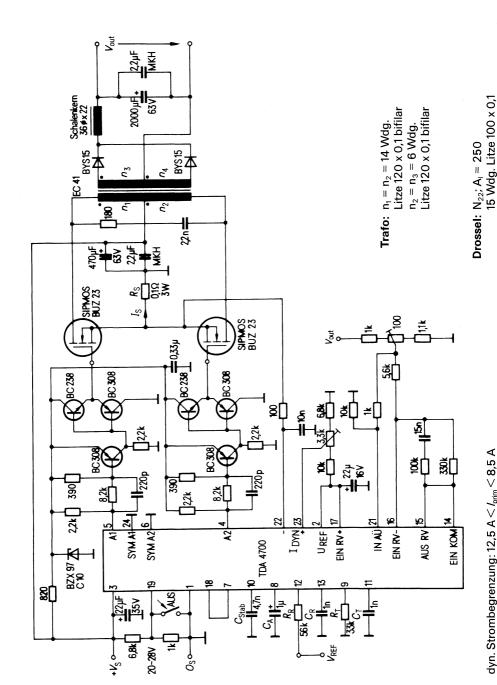

Ausgangsspannung: 4 V bis $V_{in} - 5 \text{ V}$ einstellbar

Ausgangsstrom: 0 bis 10 A Begrenzung einstellbar

Wirkungsgrade des Drosselwandlers:

Eingangsspannung $V_{in} = 24 \text{ V}$

Eingangsstrom	Laststrom	Ausgangsspannung	Wirkungsgrad
65 mA	1 mA	5,053 V	$P_{v} = 1.6 \text{ W}$
0,29 A	1 A	5,049 V	72%
0,78 A	3 A	5,041 V	80%
1,30 A	5 A	5,033 V	80%
2,35 A	8 A	5,021 V	71%
3,30 A	10 A	5,013 V	63%
ingangsspannung $V_{\scriptscriptstyle ext{in}}$	= 12 V		
60 mA	1 mA	5,053 V	$P_{V} = 0.72 \text{ W}$
0,49 A	1 A	5,049 V	85 %
1,50 A	3 A	5,041 V	83%
2,70 A	5 A	5,033 V	77%
5,90 A	8,4 A	5,019 V	60%


Leistungsschalter in getakteten Stromversorgungen

50-W-Gleichspannungswandler mit SIPMOS-Leistungstransistoren: f \approx 20 kHz

Der in Gegentaktschaltung arbeitende Wandler enthält den integrierten Baustein TDA 4700, der alle nötigen Steuer-, Regel- und Überwachungsfunktionen mit einem Minimum an externem Schaltungsaufwand übernimmt. Die Schaltung ist für eine Eingangsspannung von 20 V . . . 28 V ausgelegt ($V_{\text{in}(R)}$ = 24 V). Die Ausgangsspannung beträgt 5 V bei maximal 10 A. Ein- und Ausgang sind nicht potentialgetrennt. Die pulsbreitenmodulierten Ausgänge des TDA 4700 steuern über eine einfache push-pull-Stufe leistungslos das Gate der SIPMOS-Transistoren. Deren Sourceströme fließen über einen gemeinsamen Stromfühlerwiderstand R_s . Der Spannungsabfall wird für eine dynamische Strombegrenzung herangezogen. Der Wandler wird dadurch kurzschlußfest.

Technische Daten:

		min	typ	max	Einheit
Eingangsspannung	V_{in}	20	24	28	٧
Ausgangsspannung	V _{out}	_	5	5,25	V
Ausgangsstrom I _{out}	341	0		10	Α
Lastausregelung $\triangle V$	out				
(Lastsprung ΔI_{\circ} 30%–100%)	ut		0,4		%
Wirkungsgrad η					
$(I_{\text{out}} = 10 \text{ A}, V_{\text{in}(R)})$			72		%
Durchlaßverluste	P_{VD}	0,9 W			
Schaltverluste	P_{VS}	0,4 W			
Gesamtverluste SIPMOS-Transistor	$P_{VD} + P_{VS}$ BUZ 23	1,3 W			
On Mico Handiotol	DUL 20				

dyn. Strombegrenzung: 12,5 A < /pin < 8,5 A

Sperrwandler mit SIPMOS-Transistoren: 5 V/10 A/20 kHz

Die hier vorgestellte Schaltung mit SIPMOS-Transistoren ist ein DC/DC-Wandler ohne Überstromschutz und die Ausgangsspannung ($V_{\text{out}} = +5 \text{ V}$) ist von der Eingangsspannung ($V_{\text{in}} = +20...30 \text{ V}$) galvanisch nicht getrennt.

Funktion der Schaltung

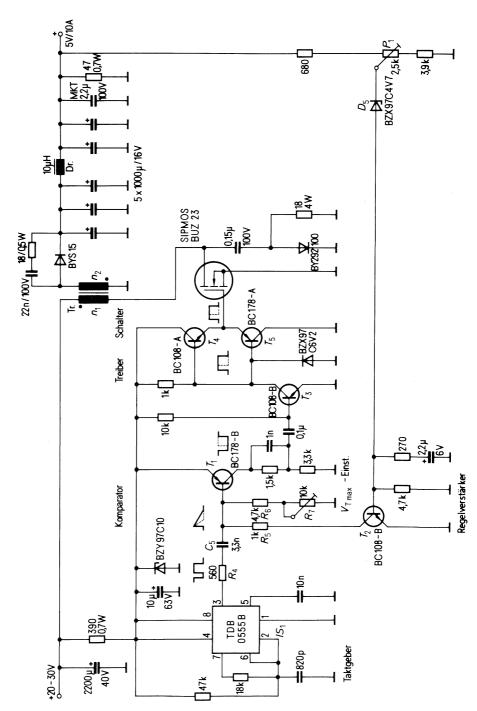
Der Zeitgeber IS $_1$ (TDB 0555B) ist als 20-kHz-Rechteckgenerator mit unsymmetrischer Ausgangsspannung beschaltet. Der Ausgang (Pin 3) ist ca. 10 μ s low und 40 μ s high. Der Transistor T $_1$ ist leitend vorgespannt. Die rechteckige Ausgangsspannung des Generators IS $_1$ wird über R $_4$, C $_5$ und R $_6$ + R $_7$ stark differenziert und erscheint als positive Dreieckspannung am Eingang des Transistors T $_1$ und somit wird T $_1$ gesperrt. Der Transistor T $_3$ als Umkehrstufe ist ebenfalls leitend vorgespannt und wird durch die negative Ausgangsspannung des gesperrten Transistors T $_1$ gesperrt und als Stromquelle geschalteter Transistor T $_4$ leitend und die Gatekapazität (ca. 1 nF) des SIPMOS-Transistors wird mit einer Rechteckspannung von ca. 7 V-Amplitude und mit ca. 70 ... 100 ns Flankenteilheiten aufgeladen.

Wenn die positive Dreieckspannung am Eingang des Transistors T_1 vorbei ist, leiten die Transistoren T_1 , T_3 und T_5 , wobei T_4 gesperrt wird. Die Gatekapazität des SIPMOS-Transistors wird nun über T_5 rasch entladen. $V_{T\,max}$ kann durch eine Verstellung des Widerstandes $\pm\,50\%$ eingestellt werden.

Die Regelung

Wenn die eingestellte Ausgangsspannung, hier $+5\,\text{V}$, erreicht wird, wird der Transistor T_2 über D_5 leitend und der Widerstand R_5 in Reihe mit der Emitter-Kollektorstrecke wird den Widerständen R_6+R_7 parallel geschaltet. Jetzt wird an die Basis des Transistors ankommende Rechteckspannung noch stärker differenziert und dies hat zur Folge, daß die Transistoren T_4 , T_3 und T_5 länger leiten, umgekehrt werden die Transistoren T_4 und der SIPMOS-Transistor für kürzere Zeit eingeschaltet, d. h. je nach den Last- oder Eingangsspannungsverhältnissen wird die Impulsbreite variiert und damit die Ausgangsspannung stabilisiert.

Technische Daten des Sperrwandlers:


 $\begin{array}{lll} \text{Eingangsspannung} & : & \textit{V}_{\text{in}} = +20\dots30\,\text{V} \\ \text{Eingangsnennspannung} & : & \textit{V}_{\text{in}(\text{R})} = +24\,\text{V} \\ \text{Ausgangsspannung} & : & \textit{V}_{\text{out}} = +5\,\text{V} \\ \text{Ausgangsstrom} & : & \textit{V}_{\text{out}} = 10\,\text{A} \\ \text{Netzausregelung} & : & = \pm\,\text{0,5}\,\% \end{array}$

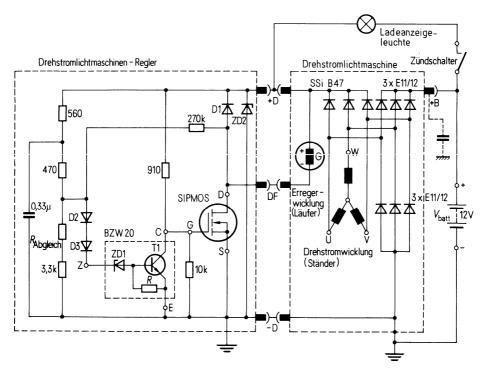
Lastausregelung : $=\pm 2\%$

Wirkungsgrad : = 78% bei $V_{in} = 24 \text{ V}$ 20 kHz-Restwelligkeit : $= 40 \text{ mV}_{ss}$

Leistungsaufnahme des

Ansteuerteils (bei $V_{in} = 24 \text{ V}$) : = 0,6 W SIPMOS-Transistor : BUZ 23

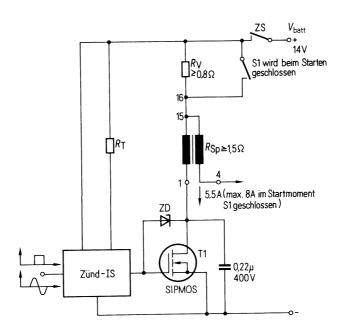
Leistungsschalter in der Kfz-Elektronik


Kfz-Regler mit SIPMOS-Transistoren

Das Bild zeigt einen herkömmlichen Drehstromlichtmaschinen-Regler, bei dem die Darlington-Transistor-Endstufe durch eine SIPMOS-Transistor ersetzt wurde.

Spezifikation des MOS-FET:
$$V_{\rm DS} = 50~{\rm V}$$
 $I_{\rm D} = 6~{\rm A}$ $R_{\rm DS(on)} \le {\rm 0.2~\Omega}$

$$R_{\rm DS(on)} \leq 0.2 \ \Omega$$


Kfz-Drehstromlichtmaschine mit SIPMOS-Transistor

Kontaktlose Kfz-Transistor-Zündung mit SIPMOS-Transistor

Das Bild zeigt eine kontaktlose Kfz-Transistorzündung mit einem SIPMOS-Transistor als Leistungsschalter. In dieser Schaltung wird speziell der hohe Eingangswiderstand des SIPMOS-Transistor ausgenützt, daher hochohmig ansteuerbar aus einem anwendungsspezifischen IS.

Spezifikation des SIPMOS-Transistors: $V_{\rm DS} = 500 \ {\rm V}$ $I_{\rm D} = 8 \ {\rm A}$ $R_{\rm DS(on)} \le 0.2 \ {\rm \Omega}$

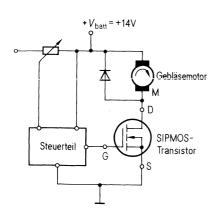
Elektronischer Drehzahlsteller für Gebläsemotoren

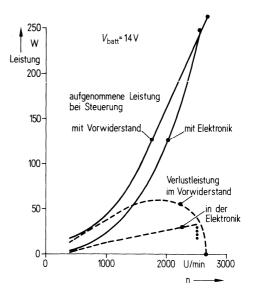
Da in letzter Zeit die mögliche Energieeinsparung in den Vordergrund gerückt ist, schlagen wir eine verbesserte Ausführung eines Schaltreglers vor, bei dem im mittleren Drehzahlbereich gegenüber einer Längsregelung mit Vorwiderstand eine Energieeinsparung bis zu 35 W vorhanden ist.

Der elektronische Aufbau ist im Bild zu sehen. Der Steuerteil ist eine mögliche Ausführung. Im Leistungsteil ist ein besonders leistungsstarker SIPMOS-Transistor eingesetzt. Im durchgeschalteten Zustand beträgt der Spannungsabfall am SIPMOS-Transistor bei / = 20 A nur etwa 1 V.

Bezüglich der Leistung ergibt sich – bezogen auf eine gegebene Betriebsspannung – folgendes:

Vollastbetrieb (Einstellpotentiometer ganz nach rechts gedreht; Ansteuerspannung ist ständig vorhanden): Infolge des Spannungsabfalls von ≈ 1 V am SIPMOS-Transistor läßt sich nicht ganz jene Maximaldrehzahl erreichen, die bei Kurzschluß desselben erzielbar wäre; die maximale Leistungsaufnahme ist somit um etwa 8% verringert.


Mittlerer Drehzahlbereich: Bei gleicher Drehzahl ist die aufgenommene Leistung bei der Elektronik-Steuerung merklich geringer als bei einer Steuerung mit einem Vorwiderstand.


Stillstand (Einstellpotentiometer ganz nach links gedreht):

Die Elektronik nimmt nur einen geringen Ruhestrom auf (etwa 30 mA bei 14 V).

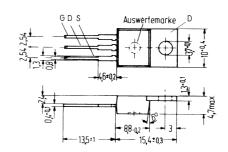
Getaktete Gebläsesteuerung im Kfz

Steuerkennlinie bzw. Leistungsbilanz

Datenblätter

Bestell-Nr. C 67078-A 1300-A 2

Bauelement: SIPMOS-FET Leistungstransistor, N-Kanal Anreicherungstyp

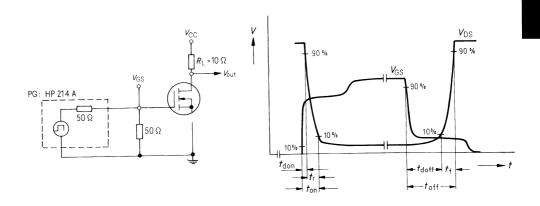

Achtung: Eingang Gate-Source vor statischer Aufladung schützen!

Gehäuse: Kunststoffgehäuse, der Drainanschluß ist mit dem Montageflansch

leitend verbunden. Gewicht etwa 2 g.

Normbezeichnung: TO 220 AB nach JEDEC, 14 A 3 nach DIN 41863

Absolute Grenzdaten


Drain-Source-Spannung	$V_{ m DS}$	50	V
Drain-Gate-Spannung ($R_{GS} = 1 \text{ M}\Omega$)	V_{DGR}	50	V
Drain-Gleichstrom dc	I_{D}	12	A
Drain-Strom gepulst	I_{Dpuls}	24	Α
Gate-Source-Spannung	$V_{\rm GS}$	±10	V
Max. Verlustleistung	P_{D}	45	w
Betriebstemperaturbereich	$\overline{\mathcal{T}_{i}}$	-25 bis +150	°C
Lagertemperaturbereich	$\mathcal{T}_{stq}^{'}$	-25 bis +150	°C
Max. Löttemperatur 1,6 mm vom			
Gehäuse für 4 s	\mathcal{T}_{sold}	300	°C
Wärmewiderstand	R_{thJC}	2,8	K/W

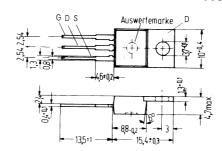
Elektrische Kenndaten bei $T_{case} = 25^{\circ}C$ (wenn nicht anders angegeben)

Statische Werte

Drain-Source-Durchbruchspannung $V_{GS} = 0 \text{ V}; I_D = 1,0 \text{ mA}$	$BV_{ exttt{DSS}}$	50	V	min
Gate-Schwellenspannung $V_{DS} = V_{GS}$; $I_{D.} = 10 \text{ mA}$	$V_{\sf GS(th)}$	2,0	V	typ
Drain-Reststrom $T_j = 25^{\circ}\text{C}$ $V_{DS} = \text{Grenzwert}; V_{GS} = 0; T_j = 125^{\circ}\text{C}$	$I_{ extsf{DSS}}$	1 4	mA mA	max max
Gate-Source-Leckstrom $V_{GS} = 10 \text{ V}$; $V_{DS} = 0 \text{ V}$	I_{GSS}	100	nA	max
Drain-Strom $V_{DS} = 25 \text{ V}; V_{GS} = 10 \text{ V}$	$I_{D \; (on)}$	12	Α	min
Drain-Source Einschaltwiderstand $V_{GS} = 10 \text{ V}; I_D = 6 \text{ A}$	R _{DS (on)}	0,1	Ω	max

Dynamische Werte			_	
Übertragungssteilheit	$oldsymbol{g}_{fs}$	2	S (1/Ω)	typ
$V_{\rm DS} = 25 \text{ V}; I_{\rm D} = 6 \text{ A}$	$C_{\rm iss}$	80	pF	typ
Eingangskapazität $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	Ciss	00	•	.,,,
Ausgangskapazität	$C_{ m oss}$	_	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$				
Rückwirkungskapazität $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	C_{rss}	_	pF	typ
Einschaltzeit: $t_{on} = t_{d (on)} + t_{r}$		10	no.	tun
$V_{\rm cc} = 30 \text{ V};$	t _{d (on)}	10 30	ns ns	typ typ
$I_{\rm D} = 3 \text{A};$	t_{r}	30	113	typ
$V_{\rm GS} = 6 \text{ V};$				
Ausschaltzeit: $t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}}$	4	70	ns	typ
$V_{\rm CC} = 30 \text{ V};$	$t_{ m d~(off)} \ t_{ m f}$	30	ns	typ
$I_{\rm D} = 3 \mathrm{A};$	Lf	30	113	Lyp
$V_{\rm GS} = 6 \text{ V};$				
für Schaltzeiten siehe Skizze		I	1	I

Bestell-Nr. C 67078 - A 1302 - A 2

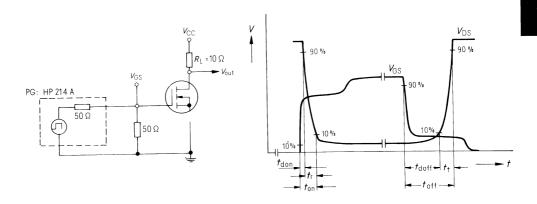

Bauelement: SIPMOS-FET Leistungstransistor, N-Kanal Anreicherungstyp

Achtung: Eingang Gate-Source vor statischer Aufladung schützen!

Gehäuse: Kunststoffgehäuse, der Drainanschluß ist mit dem Montageflansch leitend verbunden. Gewicht etwa 2 g.

Normbezeichnung: TO 220 AB nach JEDEC, 14 A 3 nach DIN 41863

Absolute Grenzdaten


Drain-Source-Spannung	$V_{ extsf{DS}}$	100	l V
Drain-Gate-Spannung ($R_{GS} = 1 \text{ M}\Omega$)	$V_{\rm DGR}$	100	V
Drain-Gleichstrom dc	I_{D}	8	Å
Drain-Strom gepulst	I_{Dpuls}	16	Â
Gate-Source-Spannung	$V_{\rm GS}$	±10	V
Max. Verlustleistung	P_{D}^{GS}	45	w
Betriebstemperaturbereich	T.	-25 bis +150	°C
Lagertemperaturbereich	\mathcal{T}_{stg}^{J}	-25 bis +150	°C
Max. Löttemperatur 1,6 mm vom	sig		
Gehäuse für 4 s	$T_{\rm sold}$	300	°C
Wärmewiderstand	R_{thJC}	2,8	K/W

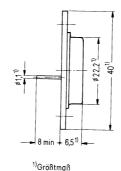
Elektrische Kenndaten bei $T_{case} = 25^{\circ}C$ (wenn nicht anders angegeben)

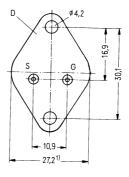
Drain-Source-Durchbruchspannung $V_{GS} = 0 \text{ V}; I_D = 1,0 \text{ mA}$	$\mathit{BV}_{\mathtt{DSS}}$	100	V	min
Gate-Schwellenspannung $V_{\rm DS} = V_{\rm GS}; I_{\rm D} = 10 \ {\rm mA}$	$V_{\mathrm{GS(th)}}$	2,0	V	typ
Drain-Reststrom $T_j = 25^{\circ}\text{C}$ $V_{DS} = \text{Grenzwert}; V_{GS} = 0; T_j = 125^{\circ}\text{C}$	$I_{ t DSS}$	1 4	mA mA	max max
Gate-Source-Leckstrom $V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$	I_{GSS}	100	nA	max
Drain-Strom $V_{DS} = 25 \text{ V}; V_{GS} = 10 \text{ V}$	$I_{D\ (on)}$	8	Α	min
Drain-Source Einschaltwiderstand $V_{\rm GS}$ = 10 V; $I_{\rm D}$ = 4 A	R _{DS (on)}	0,2	Ω	max

Dynam	ische	Werte

$\begin{array}{llllllllllllllllllllllllllllllllllll$
Eingangskapazität $C_{\rm iss}$ 75 pF typ $V_{\rm GS} = 0 \text{ V}; V_{\rm DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Ausgangskapazität $C_{\rm oss}$ - pF typ $V_{\rm GS} = 0 \text{ V}; V_{\rm DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Rückwirkungskapazität $C_{\rm rss}$ - pF typ $V_{\rm GS} = 0 \text{ V}; V_{\rm DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Einschaltzeit: $t_{\rm on} = t_{\rm d} \cdot ({\rm on}) + t_{\rm r}$ $V_{\rm CC} = 30 \text{ V};$ $t_{\rm d} \cdot ({\rm on}) = t_{\rm d} \cdot ({\rm on}) + t_{\rm r}$
Eingangskapazität $V_{\rm GS}=0$ V; $V_{\rm DS}=25$ V; $f=1$ MHz Ausgangskapazität $C_{\rm oss}=0$ PF typ $V_{\rm GS}=0$ V; $V_{\rm DS}=25$ V; $f=1$ MHz Rückwirkungskapazität $C_{\rm rss}=0$ PF typ $V_{\rm GS}=0$ V; $V_{\rm DS}=25$ V; $f=1$ MHz Einschaltzeit: $t_{\rm on}=t_{\rm d~(on)}+t_{\rm r}$ $V_{\rm CC}=30$ V; $t_{\rm d~(on)}=0$ Typ
Ausgangskapazität $C_{\rm oss}$ – pF typ $V_{\rm GS}=0$ V; $V_{\rm DS}=25$ V; $f=1$ MHz $C_{\rm rss}$ – pF typ $V_{\rm GS}=0$ V; $V_{\rm DS}=25$ V; $f=1$ MHz $C_{\rm rss}$ – pF typ $V_{\rm GS}=0$ V; $V_{\rm DS}=25$ V; $f=1$ MHz $V_{\rm CC}=30$ V; $V_{\rm DS}=1$ MHz $V_{\rm CC}=30$ V; $V_{\rm DS}=1$ MHz $V_{\rm CC}=1$ MHz
Rückwirkungskapazität $V_{\rm GS} = 0 \text{ V}; V_{\rm DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Rückwirkungskapazität $C_{\rm rss}$ – pF typ $V_{\rm GS} = 0 \text{ V}; V_{\rm DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Einschaltzeit: $t_{\rm on} = t_{\rm d~(on)} + t_{\rm r}$ $V_{\rm CC} = 30 \text{ V};$ $t_{\rm d~(on)}$ 5 ns typ
Rückwirkungskapazität C_{rss} – pF typ $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Einschaltzeit: $t_{on} = t_{d \text{ (on)}} + t_{r}$ $V_{CC} = 30 \text{ V};$ $t_{d \text{ (on)}}$ 5 ns typ
$V_{\rm GS} = 0 \text{ V; } V_{\rm DS} = 25 \text{ V; } f = 1 \text{ MHz}$ Einschaltzeit: $t_{\rm on} = t_{\rm d~(on)} + t_{\rm r}$ $V_{\rm CC} = 30 \text{ V;}$ $t_{\rm d~(on)}$ 5 ns typ
Einschaltzeit: $t_{\text{on}} = t_{\text{d (on)}} + t_{\text{r}}$ $V_{\text{CC}} = 30 \text{ V}; \qquad \qquad t_{\text{d (on)}} \qquad 5 \qquad \text{ns} \qquad \text{typ}$
$V_{\rm cc} = 30 \text{ V};$ $t_{\rm d~(on)} = 5$ ns typ
$\mathbf{v}_{\mathrm{CC}} = \mathbf{SO} \mathbf{v},$
$I_0 = 3 \text{ A}$: $t_r = 25 \text{ ns}$ typ
$I_{D} = 3 \text{ A},$ $V_{GS} = 6 \text{ V};$
Ausschaltzeit: $t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}}$
$V_{\text{CC}} = 30 \text{ V}; \qquad t_{\text{d (off)}} \qquad \text{rs} \qquad \text{typ}$
$I_{\rm D}=3{\rm A};$ $t_{\rm f}$ 25 ns typ
$V_{GS} = 6 \text{ V};$
für Schaltzeiten siehe Skizze

Bestell-Nr. C 67078 - A 1002 - A 2

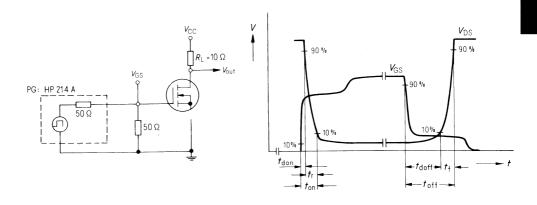

Bauelement: SIPMOS-FET-Leistungstransistor, N-Kanal Anreicherungstyp


Achtung: Eingang Gate-Source vor statischer Aufladung schützen!

Gehäuse: Metallgehäuse, Gewicht etwa 12 g.

Normbezeichnung: TO 3 nach JEDEC, 3 A 2 nach DIN 41872

Absolute Grenzdaten


Drain-Source-Spannung	$V_{ m DS}$	100	V
Drain-Gate-Spannung ($R_{GS} = 1 \text{ M}\Omega$)	V_{DGR}	100	V
Drain-Gleichstrom dc	I_{D}	8	
Drain-Strom gepulst	· ·	16	A
Gate-Source-Spannung	$V_{ m GS}$	±10	A
Max. Verlustleistung		62,5	V
Betriebstemperaturbereich	$P_{\scriptscriptstyle m D}$	1	W
Lagertemperaturbereich	/ j	-25 bis +150	°C
Max. Löttemperatur 1,6 mm vom	\mathcal{T}_{stg}	-25 bis +150	∫ °C
Gehäuse für 10 s	\mathcal{T}_{sold}	300	l ∘c
Wärmewiderstand	R_{thJC}	2,0	K/W

Elektrische Kenndaten bei $T_{\text{case}} = 25^{\circ}\text{C}$ (wenn nicht anders angegeben)

Drain-Source-Durchbruchspannung $V_{GS} = 0 \text{ V}; I_D = 1,0 \text{ mA}$	$\mathit{BV}_{\mathtt{DSS}}$	100	V	min
Gate-Schwellenspannung $V_{DS} = V_{GS}$; $I_{D} = 10 \text{ mA}$	$V_{\mathrm{GS(th)}}$	2,0	V	typ
Drain-Reststrom $V_{DS} = C$ $V_{DS} = C$ $V_{DS} = C$ $V_{CS} = C$ $V_{CS} = C$	$I_{ t DSS}$	1 4	mA mA	max max
Gate-Source-Leckstrom $V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$	I_{GSS}	100	nA	max
Drain-Strom $V_{DS} = 25 \text{ V}; V_{GS} = 10 \text{ V}$	$I_{D \; (on)}$	8	Α	min
Drain-Source Einschaltwiderstand V_{GS} = 10 V; I_{D} = 4 A	R _{DS (on)}	0,2	Ω	max

Dvnamische Werte

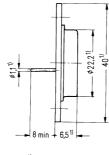
Dynamische werte				
Übertragungssteilheit $V_{\text{DS}} = 25 \text{ V}; I_{\text{D}} = 4 \text{ A}$	$oldsymbol{g}_{fs}$	2	S (1/Ω)	typ
Eingangskapazität	C_{iss}	75	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Ausgangskapazität	$C_{ m oss}$	_	pF	typ
$V_{\rm GS} = 0 \text{ V}; V_{\rm DS} = 25 \text{ V}; f = 1 \text{ MHz}$ Rückwirkungskapazität	$C_{ m rss}$	_	pF	typ
$V_{\rm GS} = 0 \text{ V}; V_{\rm DS} = 25 \text{ V}; f = 1 \text{ MHz}$	-155		•	,.
Einschaltzeit: $t_{on} = t_{d (on)} + t_{r}$ $V_{CC} = 30 \text{ V};$	$t_{\sf d\ (on)}$	5	ns	typ
$I_{D} = 3 A;$ $V_{GS} = 6 V;$	t_{r}	25	ns	typ
Ausschaltzeit: $t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}}$	$t_{\sf d~(off)}$	70	ns	typ
$V_{\rm CC} = 30 \text{ V};$ $I_{\rm D} = 3 \text{ A};$	$t_{\rm f}$	25	ns	typ
$V_{GS} = 6 \text{ V};$,	
für Schaltzeiten siehe Skizze				

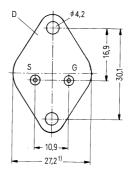
Bestell-Nr. C 67078 - A 1005 - A 2

Bauelement:

SIPMOS-FET-Leistungstransistor, N-Kanal Anreicherungstyp

Achtung: Eingang Gate-Source vor statischer Aufladung schützen!


Gehäuse:

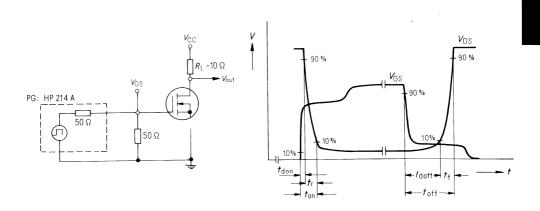

Metallgehäuse, Gewicht etwa 12 g.

Normbezeichnung:

TO 3 nach JEDEC, 3 A 2 nach DIN 41872

1)Größtmaß

Absolute Grenzdaten


Drain-Source-Spannung	$V_{ m DS}$	200	l V
Drain-Gate-Spannung ($R_{GS} = 1 M\Omega$)	$V_{\scriptscriptstyle m DGR}$	200	v
Drain-Gleichstrom dc	I_{D}	14	A
Drain-Strom gepulst	I_{Dpuls}	28	A
Gate-Source-Spannung	V_{GS}	±10	V
Max. Verlustleistung	P_{D}^{GS}	78	w
Betriebstemperaturbereich	\mathcal{T}_{i}	-25 bis +150	oC .
Lagertemperaturbereich	\mathcal{T}_{stg}^{J}	-25 bis +150	∘c o
Max. Löttemperatur 1,6 mm vom	sig		
Gehäuse für 10 s	$T_{\rm sold}$	300	°C
Wärmewiderstand	R_{thJC}	1,6	K/W

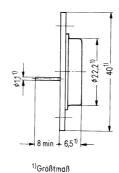
Elektrische Kenndaten bei $T_{\text{case}} = 25^{\circ}\text{C}$ (wenn nicht anders angegeben)

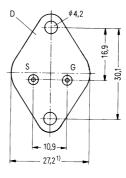
Drain-Source-Durchbruchspannung $V_{GS} = 0 \text{ V}; I_D = 1,0 \text{ mA}$	$BV_{ t DSS}$	200	V	min
Gate-Schwellenspannung $V_{\rm DS} = V_{\rm GS}$; $I_{\rm D} = 10$ mA	$V_{ m GS(th)}$	2,0	V	typ
Drain-Reststrom $T_j = 25^{\circ}\text{C}$ $V_{DS} = \text{Grenzwert}; V_{GS} = 0; T_j = 125^{\circ}\text{C}$	$I_{ t DSS}$	1 4	mA mA	max max
Gate-Source-Leckstrom $V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$	$I_{ t GSS}$	100	nA	max
Drain-Strom $V_{DS} = 25 \text{ V}; V_{GS} = 10 \text{ V}$	$I_{D \; (on)}$	14	Α	min
Drain-Source Einschaltwiderstand $V_{GS} = 10 \text{ V}; I_D = 7 \text{ A}$	R _{DS (on)}	0,2	Ω	max

Dynam	ische	Werte
-------	-------	-------

Dynamische Werte				
Übertragungssteilheit	$oldsymbol{g}_{fs}$	8	S (1/Ω)	typ
$V_{\rm DS} = 25 \text{ V}; I_{\rm D} = 7 \text{ A}$			_	
Eingangskapazität	C_{iss}	400	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$				
Ausgangskapazität	$C_{ m oss}$	_	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$				
Rückwirkungskapazität	C_{rss}	_	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$				
Einschaltzeit: $t_{on} = t_{d (on)} + t_{r}$				
$V_{\rm cc} = 30 \text{ V};$	$t_{ m d~(on)}$	20	ns	typ
$I_{D} = 3 A;$	t_{r}	80	ns	typ
$V_{GS} = 6 \text{ V};$				
Ausschaltzeit: $t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}}$				
$V_{\rm cc} = 30 \text{ V};$	$t_{\sf d\ (off)}$	150	ns	typ
$I_{D} = 3 A;$	t_{f}	50	ns	typ
$V_{GS} = 6 \text{ V};$				
für Schaltzeiten siehe Skizze		ľ		

Bestell-Nr. C 67078 - A 1008 - A 2

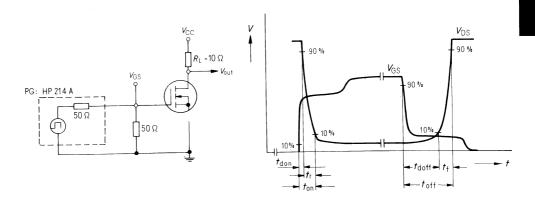

Bauelement: SIPMOS-FET Leistungstransistor, N-Kanal Anreicherungstyp


Achtung: Eingang Gate-Source vor statischer Aufladung schützen!

Gehäuse: Metallgehäuse, Gewicht etwa 12 g.

Normbezeichnung: TO 3 nach JEDEC, 3 A 2 nach DIN 41872

Absolute Grenzdaten


Drain-Source-Spannung	$V_{ m DS}$	500	l v
Drain-Gate-Spannung ($R_{GS} = 1 \text{ M}\Omega$)	V_{DGR}	500	v
Drain-Gleichstrom dc	I_{D}	8.6	Α
Drain-Strom gepulst	I_{Dpuls}	17	A
Gate-Source-Spannung	$V_{\rm GS}$	±10	v
Max. Verlustleistung	P_{D}^{GG}	100	w
Betriebstemperaturbereich		-25 bis +150	°C
Lagertemperaturbereich	$\mathcal{T}_{ ext{stg}}$	-25 bis +150	oC
Max. Löttemperatur 1,6 mm vom	$\mathcal{T}_{i}^{s.g}$		
Gehäuse für 10 s	$\mathcal{T}_{sold}^{'}$	300	∘c
Wärmewiderstand	$R_{\rm th,IC}$	1,0	K/W

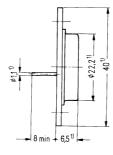
Elektrische Kenndaten bei $T_{\rm case}$ = 25°C (wenn nicht anders angegeben)

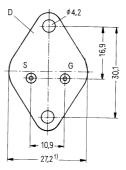
Drain-Source-Durchbruchspannung $V_{GS} = 0 \text{ V}$; $I_D = 1.0 \text{ mA}$	$BV_{ extsf{DSS}}$	500	V	min
Gate-Schwellenspannung $V_{\rm DS} = V_{\rm GS}$; $I_{\rm D} = 10$ mA	$V_{\mathrm{GS(th)}}$	2,0	V	typ
Drain-Reststrom $T_j = 25$ °C $V_{DS} = Grenzwert; V_{GS} = 0; T_j = 125$ °C	$I_{ t DSS}$	1 4	mA mA	max max
Gate-Source-Leckstrom $V_{GS} = 10 \text{ V}$; $V_{DS} = 0 \text{ V}$	I_{GSS}	100	nA	max
Drain-Strom $V_{DS} = 25 \text{ V}; V_{GS} = 10 \text{ V}$	$I_{D \; (on)}$	8,6	Α	min
Drain-Source Einschaltwiderstand $V_{GS} = 10 \text{ V}; I_D = 4 \text{ A}$	R _{DS (on)}	0,6	Ω	max

	Dvna	mische	Werte
--	------	--------	-------

Dynamische werte		1	1	
Übertragungssteilheit	$oldsymbol{g}_{fs}$	12	S (1/Ω)	typ
$V_{\rm DS} = 25 \text{ V}; I_{\rm D} = 4 \text{ A}$			_	
Eingangskapazität	$oldsymbol{\mathcal{C}}_{iss}$	1000	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	_		_	
Ausgangskapazität	$C_{ m oss}$	_	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$			_	
Rückwirkungskapazität	C_{rss}	_	pF	typ
$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$				
Einschaltzeit: $t_{on} = t_{d (on)} + t_{r}$.	50	ns	typ
$V_{\rm CC} = 30 \text{ V};$	$t_{ m d~(on)}$	1		1
$I_{\rm D}$ = 2,8 A;	t_{r}	100	ns	typ
$V_{\rm GS} = 6 \text{ V};$				
Ausschaltzeit: $t_{off} = t_{d (off)} + t_{f}$				١.
$V_{\rm CC} = 30 \text{ V};$	$t_{ m d~(off)}$	450	ns	typ
$I_{\rm D} = 2.8 {\rm A};$	t_{f}	100	ns	typ
$V_{GS} = 6 \text{ V};$				
für Schaltzeiten siehe Skizze				

Bestell-Nr. C 67078 - A 1010 - A 2

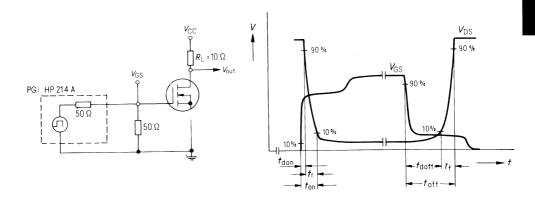

Bauelement: SIPMOS-FET Leistungstransistor, N-Kanal Anreicherungstyp


Achtung: Eingang Gate-Source vor statischer Aufladung schützen!

Gehäuse: Metallgehäuse, Gewicht etwa 12 g.

Normbezeichnung: TO 3 nach JEDEC, 3 A 2 nach DIN 41872

1)Größtmaß


Absolute Grenzdaten

Drain-Source-Spannung	$V_{ m DS}$	1000	LV
Drain-Gate-Spannung ($R_{GS} = 1 \text{ M}\Omega$)	V_{DGR}	1000	V
Drain-Gleichstrom dc	I_{D}	4.7	
Drain-Strom gepulst	I_{Dpuls}	9.4	A
Gate-Source-Spannung	$V_{\rm GS}$	±10	A
Max. Verlustleistung	P_{D}	100	w
Betriebstemperaturbereich	- 0	-25 bis +150	°C
Lagertemperaturbereich	\mathcal{T}_{stg}	-25 bis +150	°C
Max. Löttemperatur 1,6 mm vom	7:	20 013 1 100	
Gehäuse für 10 s	$T_{\rm sold}$	300	°C
Wärmewiderstand	$R_{\rm thJC}$	1,0	K/W

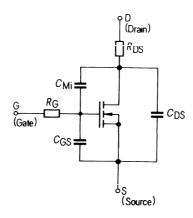
Elektrische Kenndaten bei $T_{\text{case}} = 25^{\circ}\text{C}$ (wenn nicht anders angegeben)

Drain-Source-Durchbruchspannung $V_{GS} = 0 \text{ V}; I_D = 1,0 \text{ mA}$	$BV_{ extsf{DSS}}$	1000	V	min
Gate-Schwellenspannung $V_{\rm DS} = V_{\rm GS}$; $I_{\rm D} = 10$ mA	$V_{GS(th)}$	2,0	V	typ
Drain-Reststrom $T_j = 25^{\circ}\text{C}$ $V_{DS} = \text{Grenzwert}; V_{GS} = 0; T_j = 125^{\circ}\text{C}$	$I_{ t DSS}$	1 4	mA mA	max max
Gate-Source-Leckstrom $V_{GS} = 10 \text{ V}$; $V_{DS} = 0 \text{ V}$	I_{GSS}	100	nA	max
Drain-Strom $V_{DS} = 25 \text{ V}; V_{GS} = 10 \text{ V}$	$I_{D \; (on)}$	4,7	Α	min
Drain-Source Einschaltwiderstand $V_{GS} = 10 \text{ V}$; $I_D = 2 \text{ A}$	R _{DS (on)}	2	Ω	max

Dynamische Werte		l		
Übertragungssteilheit	g_{fs}	7	S (1/Ω)	typ
$V_{\rm DS} = 25 \text{ V}; I_{\rm D} = 2 \text{ A}$	$C_{\rm iss}$	1200	pF	typ
Eingangskapazität $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$		1200		.,,
Ausgangskapazität $V_{GS} = 0 \text{ V; } V_{DS} = 25 \text{ V; } f = 1 \text{ MHz}$	$C_{ m oss}$	_	pF	typ
Rückwirkungskapazität $V_{GS} = 0 \text{ V}$; $V_{DS} = 25 \text{ V}$; $f = 1 \text{ MHz}$	C_{rss}	_	pF	typ
Einschaltzeit: $t_{on} = t_{d (on)} + t_{r}$	$t_{\sf d\ (on)}$	50	ns	typ
$V_{\rm CC} = 30 \text{ V};$ $I_{\rm D} = 2.5 \text{ A};$	$t_{\rm r}$	150	ns	typ
$V_{GS} = 6 \text{ V};$				
Ausschaltzeit: $t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}}$				
$V_{\rm CC} = 30 \text{ V};$	$t_{\sf d\ (off)}$	500	ns	typ
$I_{D} = 2.5 \; A;$	t_{f}	100	ns	typ
$V_{GS} = 6 \text{ V};$				
für Schaltzeiten siehe Skizze		1	1	1

Erläuterungen zu den technischen Daten

Allgemeines


Die folgenden Ausführungen gelten für SIPMOS-Transistoren vom Anreicherungstyp in n-Kanal-Technik.

Liegt der Wert der Spannung zwischen dem Gate- und dem Source-Anschluß unter der Gate-Schwellenspannung, so ist die Drain-Source-Strecke hochohmig. Bei Werten über der Gate-Schwellenspannung wird die Drain-Source-Strecke niederohmig.

Liegt das Potential des Source-Anschlusses über dem des Drain-Anschlusses, so verhält sich der Transistor wie eine bipolare Diode. Stromfluß vom Source- zum Drain-Anschluß.

Wird gleichzeitig der Kanal über den Gate-Anschluß aufgesteuert, so wird dem Durchlaß-widerstand der Diode der Einschaltwiderstand $R_{\mathrm{DS(on)}}$ des Transistors parallel geschaltet. Man erhält damit bei Stromfluß in Rückwärtsrichtung im Strombereich von 0 bis etwa $I_{\mathrm{SD}} = 0.6/R_{\mathrm{DS(on)}}$ einen niedrigeren resultierenden Widerstand.

Ersatzschaltbild eines SIPMOS-Transistors

Die in den Datenblättern angegebenen Kapazitätswerte für $C_{\rm iss}$, $C_{\rm oss}$ und $C_{\rm rss}$ stehen mit denen des Ersatzschaltbildes bei Vernachlässigung von $R_{\rm G}$ und $R_{\rm DS}$ in folgendem Zusammenhang:

$$C_{iss} = C_{GS} + C_{Mi}$$

$$C_{oss} = C_{DS} + C_{Mi}$$

$$C_{rss} = C_{Mi} + \frac{C_{DS} \cdot C_{GS}}{C_{DS} + C_{GS}}$$

Die Miller-Kapazität C_{Mi} und die Drain-Source-Kapazität C_{DS} sind von der Drain-Source-Spannung abhängige Größen. Die Gate-Source-Kapazität C_{GS} ist eine spannungsunabhängige Größe. R_{G} ist der durch den inneren Aufbau des Transistors bedingte Gate-Widerstand. R_{DS} stellt den Drain-Source-Widerstand dar.

Vorsichtsmaßnahmen:

Der Eingang Gate-Source muß vor Spannungen, die über der im Datenblatt zulässigen Grenze liegen geschützt werden. Auch bei nur kurzzeitigem Überschreiten wird der Transistor zerstört. Um die Transistoren ohne integrierte Zenerdiode während des Transports vor statischer Aufladung zu schützen, werden Source- und Gate-Anschluß leitfähig verbunden. Dieser Schutz sollte erst direkt vor dem Einbau entfernt werden. Lötkolben müssen geerdet sein.

Beim Entwurf von Schaltungen muß darauf geachtet werden, daß der Transistor nie mit offenen Gate-Source-Anschlüssen betrieben wird.

Anordnung der Indizes:

Spannung

Als Regel gilt, daß zwei Indizes verwendet werden, die die Punkte bezeichnen, zwischen denen die Spannung gezählt wird.

Positiven Zahlenwerten der Spannungen entsprechen positive Potentiale des mit dem ersten Index bezeichneten Punktes, gegenüber dem mit dem zweiten Index bezeichneten Punkt (Bezugspunkt).

Ströme

Als Regel gilt, daß mindestens ein Index verwendet wird. Positiven Zahlenwerten des Stromes entsprechen positive Ströme, die an dem mit dem ersten Index bezeichneten Anschluß in das Bauelement eintreten.

Nähere Angaben siehe: IEC Publication 147-0C Part 0, IEC Publication 147-1 Part 1 und IEC Publication 147-2 G Part 2; DIN 41791 Teil 9, DIN 41792 Teil 6, DIN 41858.

Grenzdaten

Die in den Datenblättern angegebenen Grenzdaten sind absolute Grenzwerte. Wird einer dieser Grenzwerte überschritten, so kann dies zur Zerstörung des Halbleiter-Bauelementes führen, auch wenn die anderen Grenzdaten nicht ganz ausgenutzt werden. Grenzdaten gelten, wenn nichts anderes angegeben wird, für 25°C.

Drain-Source-Spannung V_{DS}

Der maximal zulässige Wert der Spannung zwischen den Drain-Source-Anschlüssen.

Drain-Gate-Spannung V_{DGR}

Der maximal zulässige Wert der Spannung zwischen dem Drain- und dem Gate-Anschluß bei Überbrückung der Gate-Source-Anschlüsse mit einem vorgegebenen Widerstand.

Drain-Gleichstrom In

Maximal zulässiger Wert des Gleichstromes (dc) über den Drain-Anschluß.

Drain-Strom, gepulst ID (puls)

Maximal zulässiger Scheitelwert des Stromes über den Drain-Anschluß bei Pulsbetrieb.

Gate-Source-Spannung V_{GS}

Maximal zulässiger Wert der Spannung zwischen den Gate-Source-Anschlüssen.

Maximale Verlustleistung P_D

Der maximal zulässige Wert der Verlustleistung des Transistors.

Betriebstemperaturbereich Ti

Bereich der dauernd zulässigen inneren Ersatztemperatur, innerhalb dessen der Transistor betrieben werden darf

Erläuterungen zu den technischen Daten

Lagertemperaturbereich T_{stg}

Temperaturbereich innerhalb dessen der Transistor ohne elektrische Beanspruchung gelagert oder transportiert werden darf.

Maximale Löttemperatur T_{sold}

Die maximal zulässige Temperatur beim Löten an den Anschlüssen des Bauelementes bei einem spezifizierten Abstand vom Gehäuse und für eine spezifizierte Zeit.

Kenndaten

Unter "Kenndaten" angegebene Werte sind als Mittelwerte aufzufassen. In vielen Fällen werden die Kenndaten durch Angabe des Streubereichs ergänzt.

Drain-Source-Durchbruchspannung BV_{DSS}

Die Spannung zwischen den Drain-Source-Anschlüssen gemessen beim spezifizierten Drain-Strom und kurzgeschlossenen Gate-Source-Anschlüssen.

Gate-Schwellenspannung $V_{GS,(th)}$ (Einsatzspannung)

Der Wert der Gate-Source-Spannung gemessen beim spezifizierten Drain-Strom und bei spezifizierter Drain-Source-Spannung.

Drain-Reststrom Inss

Der Wert des Drain-Stromes bei einer spezifizierten Drain-Source-Spannung und kurzgeschlossenen Gate-Source-Anschlüssen. Angegeben werden Werte bei 25°C und einer spezifizierten höheren inneren Ersatztemperatur.

Gate-Source-Leckstrom I_{GSS}

Der Wert des Gate-Leckstromes bei einer spezifizierten Gate-Source-Spannung und kurzgeschlossenen Drain-Source-Anschlüssen.

Drain-Strom I_{D(on)}

Der Wert des Drain-Stromes bei spezifizierten Werten der Gate-Source- und der Drain-Source-Spannung.

Drain-Source-Einschaltwiderstand $R_{DS(on)}$

Der Wert des Widerstandes zwischen dem Drain- und Source-Anschluß bei spezifizierten Werten der Gate-Source-Spannung und dem Drain-Strom.

Übertragungsteilheit g

Quotient aus der Änderung des Drain-Stromes und der Gate-Source-Spannung bei spezifizierter Drain-Source-Spannung und spezifiziertem Drain-Strom.

Eingangskapazität Ciss

Die Kapazität gemessen zwischen dem Gate- und Source-Anschluß bei für Wechselspannung kurzgeschlossenen Drain-Source-Anschlüssen. Die Werte der Gleichspannung zwischen den Gate-Source- und den Drain-Source-Anschlüssen, sowie die Meßfrequenz sind spezifiziert.

Ausgangskapazität Coss

Die Kapazität gemessen zwischen dem Drain- und Source-Anschluß bei für Wechselspannung kurzgeschlossenen Gate-Source-Anschlüssen. Die Werte der Gleichspannung zwischen den Gate-Source- und den Drain-Source-Anschlüssen, sowie die Meßfrequenz sind spezifiziert.

Rückwirkungskapazität Crss

Die Kapazität gemessen zwischen dem Drain- und dem Gate-Anschluß bei Verbinden des Source-Anschlusses mit dem Schutzschirm der Meßbrücke (dreipolig). Die Werte der Gleichspannung zwischen den Gate-Source- und den Drain-Source-Anschlüssen, sowie die Meßfrequenz sind spezifiziert.

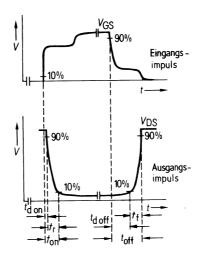
Einschaltzeit $t_{on} = t_{d(on)} + t_{r}$

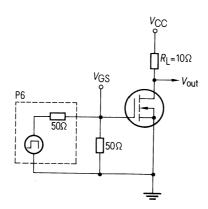
Summe aus:

der Einschaltverzögerungszeit $t_{\rm d(on)}$ gemessen zwischen dem 10%-Wert der Gate-Source-Spannung und dem 90%-Wert der Drain-Source-Spannung

sowie der Anstiegzeit t_r gemessen zwischen dem 90%-Wert und dem 10%-Wert der Drain-Source-Spannung.

Schaltung und Parameter sind spezifiziert.


Ausschaltzeit $t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}}$


Summe aus:

der Abschaltverzögerungszeit $t_{\rm d\,(off)}$ gemessen zwischen dem 90%-Wert der Gate-Source-Spannung und dem 10%-Wert der Drain-Source-Spannung

sowie der Fallzeit $t_{\rm f}$ gemessen zwischen dem 10%-Wert und dem 90%-Wert der Drain-Source-Spannung.

Schaltung und Parameter sind spezifiziert.

Meßschaltung für Schaltzeitmessung

Diagramme

Wärmewiderstand Chip-Gehäuse R_{th JC}

Quotient aus der Differenz zwischen der inneren Ersatztemperatur und der Bezugstemperatur am Gehäuse einerseits und der abgeführten Verlustleistung andererseits bei thermischem Gleichgewicht.

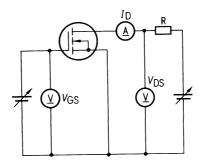
Verlustleistung $P_{ extsf{D}}$ als Funktion der Gehäusetemperatur $\mathcal{T}_{ ext{case}}$

Angegeben ist die maximal zulässige Verlustleistung abhängig von der Gehäusetemperatur.

Ausgangscharakteristik

Aufgetragen ist die typische Abhängigkeit des Drain-Stromes $I_{\rm D}$ von der Drain-Source-Spannung $V_{\rm DS}$ bei vorgegebener Gate-Source-Spannung $V_{\rm GS}$. Gehäusetemperatur und Pulsbreite sind spezifiziert.

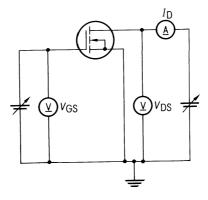
Zulässiger Betriebsbereich


Aufgetragen ist der maximal zulässige Drain-Strom $I_{\rm D}$ abhängig von der Drain-Source-Spannung $V_{\rm DS}$ für Belastung mit Einzelpulsen unterschiedlicher Breite.

Die maximal zulässige Gehäusetemperatur ist spezifiziert. Innerhalb dieses Bereiches sind alle Werte von I_D und V_{DS} erlaubt, wenn der Transistor dabei thermisch nicht überlastet wird.

Meßschaltungen

Die in den Datenblättern für die spezifizierten Parameter angegebenen Temperaturwerte sind bei den jeweiligen Messungen einzuhalten.


Drain-Strom /D

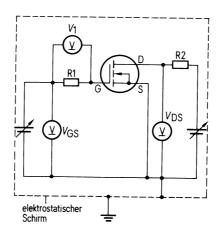
Prinzipschaltbild zum Messen des Drainstromes I_D

R dient als Schutzwiderstand. Die spezifizierte Gate-Source-Spannung $V_{\rm GS}$ wird eingestellt. Ist $V_{\rm GS}=0$ spezifiziert, so muß die Gate-Source-Strecke kurzgeschlossen werden.

Drain-Source-Einschaltwiderstand $R_{\rm DS\,(on)}$

Prinzipschaltbild zum Messen des Einschaltwiderstandes $R_{\mathrm{DS(on)}}$

Allgemein wird der Einschaltwiderstand $R_{\rm DS(on)}$ im Bereich der Sättigung gemessen. Der Innenwiderstand des Voltmeters $V_{\rm DS}$ muß wesentlich größer sein als der zu messende Einschaltwiderstand $R_{\rm DS(on)}$.

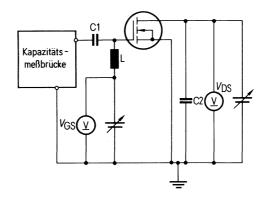

55

Erläuterungen zu den technischen Daten

Gate-Schwellenspannung $V_{GS(th)}$

(Siehe Prinzipschaltbild zum Messen des Drainstromes I_D). Die Gate-Source-Spannung wird bei spezifizierter Drain-Source-Spannung V_{DS} vom Wert Null ausgehend langsam erhöht bis der spezifizierte Drain-Strom I_D erreicht ist.

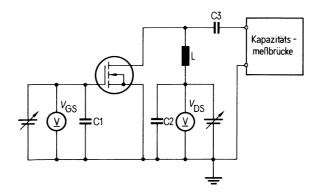
Gate-Source-Leckstrom /_{GSS}



Prinzipschaltbild zum Messen des Gate-Source-Leckstromes I_{GSS}

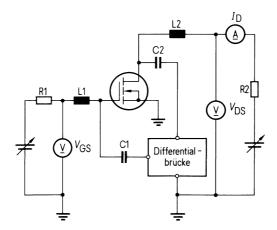
 R_1 und R_2 dienen als Schutzwiderstände. R_1 soll kleiner sein als $V_{GS}/100~I_{GSS}$. V_1 ist ein sehr empfindliches Voltmeter mit einem Innenwiderstand von mindestens 100 R_1 . Der Leckstrom ist gegeben durch $I_{GSS} = V_1/R_1$.

Die Schaltung muß elektrostatisch abgeschirmt werden. Es ist darauf zu achten, daß die Messung nicht durch Leckströme verursacht durch die Schaltungsanordnung verfälscht wird.


Eingangskapazität C_{iss} (Kleinsignalbereich)

Prinzipschaltbild zum Messen der Eingangskapazität C_{iss} bei Verwenden einer Meßbrücke ohne Gleichstromdurchgang.

Die Kapazitäten C₁ und C₂ müssen für die Meßfrequenz einen ausreichenden Kurzschluß darstellen. Die Induktivität L soll die Gleichstromversorgung entkoppeln.


Ausgangskapazität Coss (Kleinsignalbereich)

Prinzipschaltbild zum Messen der Ausgangskapazität \mathcal{C}_{oss} bei Verwenden einer Meßbrücke ohne Gleichstromdurchgang.

Die Kapazitäten C_1 , C_2 und C_3 müssen für die Meßfrequenz einen ausreichenden Kurzschluß darstellen. Die Induktivität L entkoppelt die Gleichstromversorgung.

Rückwirkungskapazität C_{rss} (Kleinsignalbereich)

Prinzipschaltbild zum Messen der Rückwirkungskapazität C_{rss} bei Verwenden einer Meßbrücke ohne Gleichstromdurchgang.

Die Kapazitäten C_1 und C_2 müssen für die Meßfrequenz einen ausreichenden Kurzschluß bilden. Die Induktivitäten L_1 und L_2 sollen die Gleichstromversorgung entkoppeln.

Montagehinweise

Allgemeines

Die Einbaulage der Transistoren ist beliebig.

Bei Bauelementen mit Glasdurchführung darf diese mechanisch nicht beansprucht werden. Hier muß ein Biegeabstand von 2mm – gerechnet vom Ende der Glasdurchführung – eingehalten werden.

Das Abwinkeln der Drähte soll in einer Biegevorrichtung erfolgen, notfalls können die Drähte auch von Hand gebogen werden, dabei muß das Drahtende zwischen Biegstelle und Bauelementekörper mit einer Zange festgehalten werden, ohne Einkerbungen zu verursachen. Wiederholtes Biegen der Anschlußdrähte ist zu vermeiden.

Wärmeableitung

Leistungstransistoren werden zur Erzielung besserer Wärmeableitung auf Chassisbleche montiert. In diesem Falle ist der Wärmewiderstand vom Chip über das Chassisblech zur Umgebung $R_{th,JA}$ anzusetzen.

$$R_{\text{th JA}} = R_{\text{th JC}} + R_{\text{th CA}}$$

 $R_{
m th~JA}$ = $R_{
m th~JC}$ + $R_{
m th~CA}$ Der Wärmewiderstand des Chassisbleches $R_{
m th~CA}$ wird nach folgenden Näherungsformeln (gültig für Kühlblech – nicht gültig für Kühlkörper) berechnet:

$$R_{\text{th CA}} = \frac{3.3}{\sqrt{\lambda d}} C^{0.25} + \frac{650}{A} C$$

λ Wärmeleitwert des Chassisbleches in W/K cm

Material	λ (W/°C cm)		
Aluminium	2,1		
Kupfer	3,8		
Messing	1,1		
Stahl	0,46		

- d Dicke des Chassisbleches in mm
- A Fläche des Chassisbleches in cm²
- C Korrekturfaktor für die Lage und die Oberflächenbeschaffenheit des Chassisbleches nach folgender Tabelle:

Oberfläche	blank	geschwärzt
Lage		
senkrecht waagrecht	0,85 1	0,43 0,5

Die Formel gilt für annähernd quadratisch geformte Chassisbleche, wenn der Transistor in der Mitte des Kühlbleches montiert, die einzige Wärmequelle am Chassisblech darstellt. Die Werte der Konstanten und von C gelten in ruhender Luft bis zu einer Umgebungstemperatur von etwa 45°C, wenn keine heißen, wärmestrahlenden Teile in der Nähe sind.

Wärmeübergangswiderstand einer Glimmerscheibe R_{th} (K/W)

Gehäuse	Dicke der Scl	neibe trocken	beidseitig eingefettete Scheibe
	5 0 μ	100 μ	reduziert den Widerstand um:
TO 3	1,25	1,5	0,9

Erläuterungen zu den technischen Daten

Lötvorschriften

Jedes Halbleiter-Bauelement ist äußerst empfindlich gegen Überschreiten der höchstzulässigen inneren Ersatztemperatur.

Beim Einlöten von Halbleiterbauelementen ist darauf zu achten, daß das Bauelement keinesfalls thermisch überlastet wird. Die innere Ersatztemperatur darf beim Löten bei Silizium-Bauelementen 200° C nicht überschreiten (max. 1 Minute). Während des Lötens müssen starke mechanische Spannungen von den Anschlüssen ferngehalten werden.

Lötangaben

Drahtlänge L =	1,6	5	mm
Löttemperatur 260°C	15	15	S
Löttemperatur 300°C*	10	15	S

^{*}Die Werte gelten nur für Kolbenlötung.

Die Drahtlänge L wird von der Lötstelle an gemessen.

Wartung

Transistoren sind als ruhende elektrische Bauelemente im allgemeinen wartungsfrei. Die Isolationsstrecke der Transistoren sind jedoch gegen Spritz und Tropfwasser sowie gegen Verstaubung nicht geschützt. Um die Isolationsfähigkeit und die Wärmeabfuhr nicht zu beeinträchtigen, sind die Transistoren insbesondere deren Isolationsstrecken, sowie die Kühlkörper von Zeit zu zeit zu reinigen.

Unsere Geschäftsstellen

Bundesrepublik Deutschland und Berlin (West)

Siemens AG
Salzufer 6–8
Postfach 110560
1000 Berlin 11

(303) 3939-1, □ 1810-278
FAX (030) 3939-2630

Siemens AG Contrescarpe 72 Postfach 107827 2800 Bremen 1 6 (0421) 364-1, 🖂 245451 FAX (0421) 364-687

Siemens AG Lahnweg 10 Postfach 11115 **4000 Düsseldorf 1** ♂ (0211) 3030-1, ☑ 8581301 FAX (0211) 3030-506

Siemens AG
Gutleutstraße 31
Postfach 4183
6000 Frankfurt 1
© (0611) 262-1, 🖾 414131
FAX (0611) 262-2253

Siemens AG Lindenplatz 2 Postfach 105609 2000 Hamburg 1 ♂ (040) 282-1, Iss 2162721 FAX (040) 282-2210

Am Maschpark 1 Postfach 5329 **3000 Hannover 1** ☎ (0511) 199-1, ☑ 922333

Siemens AG

Siemens AG

© (0511) 199-1, № 922333 FAX (0511) 199-2799 Siemens AG

N 7, 18 (Siemenshaus) Postfach 2024 **6800 Mannheim 1** © (0621) 296-1, <u>I</u> 462261 FAX (0621) 296-222

Richard-Strauss-Straße 76 Postfach 202109 8000 München 2 \$\tilde{\tau}\$ (089) 9221-1, \$\square\$ 529421-25 FAX (089) 9221-4499 Siemens AG Von-der-Tann-Straße 30 Postfach 4844 8500 Nürnberg 1 ♂ (0911) 654-1, ဩ 622251 FAX (0911) 654-3436, 34614, 3716

Siemens AG Geschwister-Scholl-Straße 24 Postfach 120 7000 Stuttgart 1 ♂ (0711) 2076-1, ဩ 723941 FAX (0711) 2076-706

Siemens Bauteile Service Lieferzentrum Fürth Postfach 146 8510 Fürth-Bislohe © (0911) 3001-1, 🗔 623818

Europa

Belgien

Siemens S.A. chaussée de Charleroi 116 B-1060 Bruxelles ♂ (02) 5373100, ☑ 21347

Bulgarien

RUEN, Büro für Firmenvertretungen und Handelsvermittlungen bei der Vereinigung "Interpred" San Stefano 14/16 BG-1504 Sofia 4 ♂ 457082, I 22763

Dänemark

Siemens A/S Borupvang 3 **DK-2750 Ballerup ③** (02) 656565, ဩ 35313

Finnland

Siemens Osakeyhtiö Mikonkatu 8 Fach 8 **SF-00101 Helsinki 10** 중 (90), 1626-1, ဩ 124465

Frankreich

Siemens S.A. 39-47, boulevard Ornano F-93200 Saint-Denis (B.P. 109, F-93203 Saint Denis CEDEX 1) (für Personalpost: B.P. 122, F-93204 Saint-Denis CEDEX 1) ♥ (16-1) 8206120, ☑ 620853

Griechenland

Siemens Hellas E.A.E. Voulis 7 P.O.B. 601 **Athen 125** ♂ (01) 3293-1, ⋈ 216291

Großbritannien

Siemens Limited Siemens House Windmill Road Sunburry-on-Thames Middlesex TW 16 7HS © (09327) 85691, 128 8951091

Irland

Siemens Limited 8, Raglan Road **Dublin 4 ⑦** (01) 684727, ⋈ 5341

Island

Smith & Norland H/F Nóatún 4 P.O.B. 519 Reykjavik ♂ 28322, ⋈ 2055

Italien

Siemens Elettra S.p.A. Via Fabio Filzi, K 25/A Casella Postale 41 83 I-20124 Milano ♂ (02) 6248, ဩ 330261

Jugoslawien

Generalexport Masarikova 5/XIV Poštanski fah 223 **YU-11001 Beograd** ♂ (011) 684866, ဩ 11287

Luxemburg

Siemens Société Anonyme 17, rue Glesener B.P. 1701 Luxembourg ❖ 49711-1, ☑ 3430

Niederlande

Siemens Nederland N.V. Wilhelmina van Pruisenweg 26 NL-2595 AN Den Haag (Postbus 16068, NL-2500 BB Den Haag) © (070) 782782, 53 31373

Norwegen

Siemens A/S Østre Aker vei 90 Postboks 10, Veitvet N-Oslo 5 © (02) 15 30 90, 🖂 18 477

Österreich

Siemens Aktiengesellschaft Österreich Apostelgasse 12 Postfach 326 A-1031 Wien © (0222) 7293-0, Is 131866

Polen

PHZ Transactor S.A. ul. Stawki 2 P.O.B. 276 **PL-00-950 Warszawa 398910**, 🖸 815554

Portugal

Siemens S.A.R.L. Avenida Almirante Reis, 65 Apartado 1380 P-1100 Lisboa-1 ♂ (019) 538805, ☑ 12563

Rumänien

Siemens birou de consultații tehnice Strada Edgar Quinet Nr. 1 R-70106 București 1 70 151825, 151 11473

Schweden

Siemens Aktiebolag Norra Stationsgatan 69 Box 23141 **5-10435 Stockholm 23 5** (08) 241700, ဩ 11672

Schweiz

Siemens-Albis AG Freilagerstraße 28 Postfach CH-8047 Zürich To (01) 2473111, 121 52131

Spanien

Siemens S.A. Orense, 2 Apartado 155 **Madrid 20** ☎ (91) 4552500, ☑ 27769

Tschechoslowakei

EFEKTIM, Technisches Beratungsbüro Siemens AG Anglická ulice 22, 3. Stock P.O.B. 1087 CS-12000 Praha 2 © 258417, 151 122389

Türkei

Etmas Elektrik Tesisatve Mühendislik A.S. Meclisi Mebusan Caddesi, 35 Findikli P.K. 213 Findikli Istanbul 7 45 2090, 12 24 233

Ungarn

Intercooperation AG, Siemens Kooperationsbüro Böszörményi út 9–11 P.O.B. 1525 H-1126 Budapest © (01) 154970, 🖼 224133

Union der Sozialistischen Sowjetrepubliken

Ständige Vertretung der Siemens AG in Moskau Internationales Postamt Postfach 77 **SU-Moskau G 34** ☎ 2027711, ☑ 7413

Afrika Ägypten

Siemens Resident Engineers 33, Dokki Street P.O.B. 775 Dokki/Cairo Arab Republik Egypt ⊕ 982671, ⅓ 321

Äthiopien

Siemens Ethiopia Ltd. P.O.B. 5505 Addis Ababa ↑ 151599, ፲፰ 21052

Algerien

Siemens Algèrie S.A.R.L. 3, Viaduc Youghourta B.P. 224, Alger-Gare Alger 6 615966/67, 12 52817

Libyen

Siemens Resident Engineers Socialist People's Libyan Arab Jamahiriya P.O.B. 46 Tripoli © 41534. Is 20029

Marokko

SETEL
Société Electrotechnique
et de Télécommunications S.A.
Immeuble Siemens
km 1, Route de Rabat
Casablanca-Ain Sebãa
© 351025, 13 25914

Nigeria

Siemens Nigeria Ltd. Siemens House Industrial estate 3 f, Block A P.O.B. 304, Apapa Oshodi (Lagos) ↑ 842502, ﷺ 21357

Sudan

National Electrical & Commercial Company (NECC) P.O.B. 1202 Khartoum Republic of Sudan ₹ 80818, ᠍ 642

Südafrika

Siemens Limited Siemens House, Corner Wolmarans and Biccard Streets, Braamfontein 2001 P.O.B. 4583 Johannesburg 2000 © (011) 7159111, [5] 58-7721

Tunesien

Sitelec S.A., Immeuble Saâdi - Tour C Route de l'Ariana **Tunis-El Menzah TN** ♣ 231526, ☑ 12326

Zaire

Siemens Zaire S.A.R.L. B.P. 9897 6, rue Limité **Kinshasa 1** ↑ 22608, ☑ 21377

Amerika Argentinien

Siemens Sociedad Anónima Avenida Pte. Julio A. Roca 516 Casilla Correo Central 1232 RA-1067 Buenos Aires 5 300411, 13 121812

Bolivien

Sociedad Comercial é Industrial Hansa Limitada CalleMercadoesquinaYanacocha Cajón Postal 1402 La Paz © 355317. Is 5261

Brasilien

Siemens S.A.
Sede Central
Avenida Mutinga, 3650
Pirituba
BR-05110 São Paulo-SP
(Caixa Postal 1375,
BR-01000 São Paulo)

© (011) 2610211

Il-123633. 11-23641

Chile

Gildemeister S.A.C., Area Siemens Casilla 99-D Santiago de Chile © 82523, IM TRA SGO 392, TDE 40588

Ecuador

Siemens S.A. Avenida América y Hernández Girón s/n., Casilla de Correos 3580 Quito © 454000, 🖾 22190

Kanada

Kolumbien

Siemens S.A. Carrera 65, No. 11-83 Apartado Aéreo 80150 **Bogotá 6** ↑ 2628811, ⅓ 44750

Mexico

Siemens S.A.
Poniente 116, No. 590
Col. Ind. Vallejo
Apartado Postal 15064
México 15, D.F.
5 5670722, 🖾 1772700

Uruguay

Conatel S.A. Ejido 1690 Casilla de Correo 1371 Montevideo © 917331, № 934

Venezuela

Siemens S.A. Apartado 3616 Caracas 101 ☎ (02) 2392133, ☒ 25131

Vereinigte Staaten von Amerika

Siemens Corporation 186 Wood Avenue South Iselin, New Jersey 08830 © (201) 494-1000 Image: WW 844491 TWX WU 7109980588

Asien Afghanistan

Afghan Electrical Engineering and Equipment Limited Alaudin, Karte 3 P.O.B. 7 **Kabul 1** ⊕ 40446, ☑ 35

Bangladesch

Siemens Bangladesh Ltd. 74, Diskusha Commercial Area P.O.B. 33 Dacca 2 ○ 244381. ☑ 5524

Hongkong

Jebsen & Co., Ltd.
Siemens Division
Prince's Building, 24th floor
P.O.B. 97
Hong Kong
© 5225111, 13 73221

Indien

Siemens India Ltd. Head Office 134-A, Dr. Annie Besant Road, Worli P.O.B. 6597 Bombay 400018 © 379906, IS 112373

Indonesien

Representative Siemens AG Jl. Kebon Sirih 4 P.O.B. 2469 **Jakarta Pusat** ♂ 35 1051, ☑ 46222

Irak

Siemens Iraq Consulting Office P.O.B. 3120

Baghdad

→ 98198.

2393

Iran

Siemens Sherkate Sahami Khass Ave. Ayatolla Taleghani 32 Siemenshaus **Teheran 15** ♂ (021) 614-1, ☑ 212351

Japan

Siemens K.K.
Sales and Administration
Gotanda Fujikura Building,
7th + 9th floor
11–20, Nishigotanda 2-chome,
Shinagawa-ku
P.O.B. 68, Osaki
Tokyo 141
© (03) 4902171, 🖾 22808

Korea (Republik)

Siemens Electrical Engineering Co., Ltd. C.P.O.B. 3001 Seoul 7783431, 🖾 23229

Kuwait

Abdul Aziz M. T. Alghanim Co. & Partners
Abdulla Fahad Al-Mishan Building
Al-Sour Street
P.O.B. 32 04
Kuwait, Arabia
423336, 🖾 2131

Libanon

Ets. F. A. Kettaneh S.A. (Kettaneh Frères)
Medawar
P.B. 110242
Beyrouth
© 251040, IM 20614

Malaysia

Guthrie Engineering (Malaysia)
Sdn. Bhd.,
Electrical &
Communications Division
17, Jalan Semangat
P.O.B. 30
Petaling Jaya/Selangor

▼ 773344. I 37573

Pakistan

Siemens Pakistan Engineering Co. Ltd. Ilaco House, Abdullah Haroon Road P.O.B. 71 58 Karachi 3 5 516061, 🖼 2820

Philippinen

Engineering Equipment, Inc. Machinery Division, Siemens Department E. Rodriguez Avenue Murphy, Quezon City P.O.Box 7160, ADC-MIA 3120 773011,

RCA 7222382, EEC 3695

Saudi-Arabien

Arabia Electric Ltd. Head Office P.O.B. 4621 Jeddah ↑ 59521, ⅓ 401864

Singapur

Siemens Components PTe. Ltd. 19B – 45B, Jalan Tenteram Singapore 12 550811, 🖾 RS 21000

Syrien

Syrian Import Export & Distribution Co., S.A.S. SIEDCO Port Saïd Street P.O.B. 363 Damas ₱ 1343133, № 11267

Taiwan

Delta Engineering Ltd. 42, Hsu Chang Street, 8th floor P.O.B. 58497 Taipei ♂ 3114731, ဩ 21826

Thailand

B. Grimm & Co., R.O.P. 1643/4,Phetburi Road (Extension) G.P.O.B. 66 Bangkok 10 ₱ 2524081, ☑ 2614

Yemen (Arab. Republik)

Tihama Tractors & Engineering Co. Ltd. P.O.B. 49 Sanaa Yemen Arab Republic 5 2462, ☑ 2217

Australien

Australien

Siemens Industries Limited 544 Church Street, Richmond Melbourne, Vic. 3121

○ (03) 4297111,
□ 30425

Inhaltsverzeichnis SIPMOS-Kurzinformation Typenübersicht
Anwendungsbeispiele
 Datenblätter
Erläuterungen zu den technischen Daten
Anschriften unserer Geschäftsstellen

SIEMENS

Bestell-Nr. B/2220 Printed in Germany KG 048025.